THE INTEGRATED PLANT RECORD VEGETATION ANALYSIS: INTERNET PLATFORM AND ONLINE APPLICATION

VASILIS TEODORIDIS

Department of Biology and Environmental Studies, Faculty of Education, Charles University in Prague, M.D. Rettigové 4, 116 39 Prague 1, Czech Republic; e-mail: vasilis.teodoridis@pedf.cuni.cz

JOHANNA KOVAR-EDER

State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; e-mail: johanna.eder@smns-bw.de

PETR MAREK

Faculty of Informatics and Statistics, University of Economics, Prague, Winston Churchill sq. 4, 130 67 Prague 3, Czech Republic; e-mail: prmarek@gmail.com

ZLATKO KVAČEK

Institute of Geology and Palaeontology, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic; e-mail: kvacek@natur.cuni.cz

PETR MAZOUCH

Faculty of Informatics and Statistics, University of Economics, Prague, Winston Churchill sq. 4, 130 67 Prague 3, Czech Republic; e-mail: mazouchp@vse.cz

Teodoridis, V, Kovar-Eder, J., Marek, P., Kvaček, Z., Mazouch, P. (2011): The Integrated Plant Record Vegetation Analysis: Internet Platform and Online Application. – Acta Mus. Nat. Pragae, Ser. B. Hist. Nat., 67 (3–4): 159–164. Praha. ISSN 0036-5343.

Abstract. The Integrated Plant Record vegetation analysis (IPR vegetation analysis) is a semi-quantitative method that has been developed to reconstruct Cenozoic zonal vegetation based on the fossil leaf, fruit, and pollen record, i.e., the integrated plant record. To date, thousands of taxa have been scored and more than 300 fossil and modern plant sites have been evaluated by this method. Such huge amounts of data can be handled easily and made widely available only by a sophisticated, automated working application. The internet platform www.iprdatabase.eu provides an interactive database of scored taxa, localities, and a template for the evaluation of further plant assemblages, whether fossil or modern. Moreover, the computerised application allows changing classification parameters, directly editing synonyms and typographical errors, as well as scoring taxa within formerly uploaded datasets. To keep the database operational, the abovementioned inputs are possible only under an authorised access to the application.

■ IPR-vegetation analysis, database, Cenozoic, fossil, living, plant, World Wide Web

Received October 22, 2011 Issued November 2011

Introduction

The Integrated Plant Record vegetation analysis (IPRvegetation analysis) was first introduced by Kovar-Eder and Kvaček (2003). Since then it has proven itself as an essential tool for reconstructing zonal plant cover and palaeoenvironments in the Cenozoic. It has been applied to more than 300 fossil and modern sites, integrating foliar, carpological and pollen data of thousands of taxa (Jechorek, Kovar-Eder and Kvaček 2004, Kovar-Eder et al. 2006, Kovar-Eder et al. 2008, Teodoridis et al. 2009, Teodoridis 2010, Kvaček et al. 2011, Jacques et al. 2011, Teodoridis et al. 2011). In the latter publication the IPR-vegetation analysis was applied to modern vegetation of SE China (Mt. Emei, Longqi Mt., Meili Snow Mt.) and Japan (Shirakami Sanchi, Mt. Fuji, Nara, Yokohama, Yakushima Island) to test whether it properly reflects plant sociological classification (Teodoridis et al. 2011). This study successfully tested the approach by cluster analysis. The enormous datasets that have been produced since the introduction of this method can be handled effectively and made accessible to the scientific public only by providing an open access internet platform. This includes an information website, an automated working database of the fossil taxa, of modern taxa, and plant localities, and a calculation tool to apply the IPR-vegetation analysis effectively.

Here, we introduce the internet platform for open access and automatised data-processing for the IPR-vegetation analysis and we compare the approach to other methods focusing on vegetation reconstruction.

The IPR-vegetation analysis – brief methodological description

The IPR-vegetation analysis is a semi-quantitative method developed by Kovar-Eder and Kvaček (2003) to assess zonal vegetation based on the fossil plant record (leaf, fruit, and pollen assemblages). It attempts to incorporate taxonomy, physiognomy, and autecological properties of Cenozoic plants as an objective assessment of the fossil vegetation (see Kovar-Eder and Kvaček 2007, Kovar-Eder et al. 2008). Zonal and azonal plant elements are assigned to thirteen basic taxonomic-physiognomic groups, termed components, defined to reflect key ecological characteristics of an assemblage (Kovar-Eder and Kvaček 2003, 2007, Jechorek and Kovar-Eder 2004, Kovar-Eder et al. 2008). Most recently, Teodoridis et al. (2011) render more precisely the taxonomic-physiognomic grouping: defined were the conifer component (CONIFER), broad-leaved deciduous component (BLD), broad-leaved evergreen component (BLE), sclerophyllous component (SCL), legume-like component (LEG), zonal palm component (ZONPALM), arborescent fern component (ARBFERN), dry herbaceous component (D-HERB), mesophytic herbaceous component (M-HERB). Azonal components, i.e., azonal woody component (AZW), azonal non-woody component (AZNW) and aquatic component (AQUA). The component PRO-BLEMATIC TAXA includes elements with uncertain taxonomic-physiognomic affinity (Tab. 1). For further analysis, all taxa (but not their abundances) of every single assemblage have to be assigned to those components and their relative

Table 1. Overview of the taxonomic and physiognomic groups defined for the IPR-vegetation analysis and their physiognomic descriptions.

TAXO	DNOMIC-PHYSIOGNOMIC COMPONENTS	PHYSIOGNOMIC DESCRIPTION						
	CONIFER COMPONENT (CONIFER)	Zonal and extrazonal conifers. For example, Cunninghamia, Abies, Picea, and Tsuga.						
	BROAD-LEAVED DECIDUOUS COMPONENT (BLD)	Zonal broad-leaved deciduous woody angiosperms. Leaf-size class microphyll (2.25-20.25 cm ²), notophyll (20.25-45 cm ²), or mesophyll (45-182.2 cm ²) sensu Webb (1959), texture thin, usually not entire-margined (Kovar-Eder et al. 2008, Fig. 3A).						
	BROAD-LEAVED EVERGREEN COMPONENT (BLE)	Zonal broad-leaved evergreen woody angiosperms. Leaf-size class microphyll, notophyll, or mesophyll – see leaf size template, texture coriaceous, usually entire-margined, revolute, erose, or inconspicuously (often sparsely) toothed. The resolution of the BLE component is higher in floras with leaf cuticle preserved, which allows a differentiation of the families with uniform leaf morphology (e.g., Lauraceae) to the specific level. Without preserved cuticle, the resolution of this component should be less accurate (Kovar-Eder et al. 2008, Fig. 3B).						
ZONAL	SCLEROPHYLLOUS COMPONENT (SCL)	Zonal sclerophyllous woody angiosperms. Leaf-size class nanophyll to microphyll (0.25-2.25 cm ² sensu Webb 1959, lower end of leaf size range) – see leaf size template; texture thick, toothed, often with spinose teeth (Kovar-Eder et al. 2008, Fig. 3C), or entire margined.						
	LEGUME-like COMPONENT (LEG)	Woody angiosperms with legume-like folige. Leaf size class (of leaflets) leptophyll (<0.25 cm ² sensu Webb 1959) or nanophyll, that is, the lower end of microphyll size range; mostly entire margined or inconspicuously toothed (Kovar-Eder et al. 2008, Fig. 3D).						
	ZONAL PALM COMPONENT (ZONPALM)	Zonal palms, e.g., Phoenicites borealis and Phoenix hercynica.						
	ARBORESCENT FERN COMPONENT (ARBFERN)	Zonal arborescent ferns.						
	DRY HERBACEOUS COMPONENT (D-HERB)	Zonal angiosperm xeric herbs characteristic of open woodlands and grasslands, including dry zonal non-woody elements, e.g., monocots, ferns and horsetails.						
	MESOPHYTIC HERBACEOUS COMPONENT (M-HERB)	Zonal angiosperm mesophytic herbs characteristic of mesophytic forest understorey, including zonal non-woody elements, e.g., monocots, ferns, horsetails and lycopods.						
AL	AZONAL WOODY COMPONENT (AZW)	Azonal woody conifers and angiosperms, e.g., <i>Taxodium</i> , <i>Glyptostrobus</i> , partly <i>Acer tricuspidatum</i> , <i>Salix</i> , <i>Populus</i> , <i>Avicennia</i> , and <i>Calamus daemonorops</i> .						
AZONA	AZONAL NON-WOODY COMPONENT (AZNW)	Azonal non-woody elements characterized by herbaceous helophytes as monocots, ferns, horsetails and lycopods, e.g., <i>Cladium, Cladiocarya</i> (Cyperaceae), and <i>Decodon</i> (Lythraceae).						
4	AQUATIC COMPONENT	Aquatic plants including non-rooted hydrophytes, e.g., Salvinia, Nuphar.						
ŀ	PROBLEMATIC TAXA	These elements cannot be assigned to the above mentioned groups. They are included as problematic taxa.						

proportions have to be calculated. To characterise zonal vegetation, the following proportions of components are regarded as relevant: (a) the proportion of the BLD, BLE, and SCL+LEG components of zonal woody angiosperms, where "zonal woody angiosperms" means sum of BLD+ +BLE+SCL+LEG+ZONPALM+ARBFERN components; (b) the proportion of the ZONAL HERB (D-HERB+M-HERB) component of all zonal taxa, where "zonal taxa" means sum of the CONIF+BLD+BLE+SCL+LEG+ ZON-PALM+ARBFERN+D-HERB+M-HERB components.

The following six zonal vegetation types have been distinguished (Kovar-Eder and Kvaček 2007, table 2; Kovar-Eder et al. 2008, table 4): zonal temperate to warm-temperate broad-leaved deciduous forests (broad-leaved deciduous forests "BLDF"), zonal warm-temperate to subtropical mixed mesophytic forests (mixed mesophytic forests "MMF"), zonal subtropical broad-leaved evergreen forests (broad-leaved evergreen forests "BLEF"), zonal subtropical, subhumid sclerophyllous or microphyllous forests (subhumid sclerophyllous forests "ShSF"), zonal xeric open woodlands (open woodland), and zonal xeric grasslands or steppe (xeric grassland). Recently, Teodoridis et al. (2011) additionally defined ecotones between the BLEF and MMF and the BLDF and MMF (Table 2).

Strengths and weakness of the IPR-vegetation analysis

As zonal vegetation is important for climate reconstruction and modeling, the IPR-vegetation analysis is designed to assess that vegetation. It focuses on presumably zonal elements to obtain a picture of mesic vegetation. It explicitly excludes azonal taxa, which have been demonstrated to distort the physiognomy of zonal vegetation (e.g., Parschlug – Kovar-Eder et al. 2004, Royer et al. 2009). Ten zonal taxa are regarded as a minimum to perform this method. The reliability of the results increases with increasing number of zonal taxa preserved. One main advantage is the possibility to employ the analysis independently for different organ assemblages, i.e., leaf, seed and fruit, pollen and spores, and potentionally wood, thus taking advantage of the complementary information offered by different sources. Another key advantage is that changes in autecology that

may occur over time can also be accounted for by different scorings of the same taxon at sites of different age. Such autecological adaptions, e.g., in Cercidiphyllum and Zelkova (Kovar-Eder et al. 1998, Denk and Grimm 2005), may be related to climate change (Kvaček 2007). The taxa scores therefore are not necessarily static. The IPR-vegetation analysis can be applied to single plant localities, regardless whether they yield only a leaf, fruit or pollen assemblage or different plant organ assemblages. The results provide a picture of the local mesic vegetation. If there are several sites almost equivalent in age, then zonal vegetation of a wider region can be reconstructed and the results visualised by applying a mapping program (Jechorek and Kovar-Eder 2004, Kovar-Eder et al. 2006, Kovar-Eder et al. 2008). The scoring for the IPR-vegetation analysis is simple and no additional statistical methods or support of sophisticated statistical programs are required. Although the fossil record is usually richer for azonal (mainly wetland) taxa than for zonal or extrazonal ones, the methodological development towards assessing wetland vegetation lags behind and this deficiency is one of the authors' future goals.

Vegetation reconstruction methods in comparison

A widespread and the earliest vegetation reconstruction method is the phytosociological approach (e.g., Heer 1855, Saporta and Marion 1878, Saporta 1881, Kirchheimer 1957). In this syntaxonomical concept, palaeoabiotic factors (e.g., substrate and trophy characters, groundwater table, salinity, etc.) are also considered to different degrees. In this method, several palaeophytocenological markers are usually selected based on their abundance, physiognomical and taxonomical character on this basis the defined palaeovegetation units (including their nearest living relatives (NLRs) environmental datasets) have been correlated to suitable extant vegetation units and/or subunits. Mai (1995, p. 498--603) presented most of the published vegetation types and their synonyms, thus providing a detailed overview of zonal and azonal phytosociological units in current use for the Paleogene and Neogene of Europe. In contrast, the IPRvegetation analysis is designed to indicate major zonal vegetation types, i.e., BLDF, MMF, BLEF, etc. that are

Vegetation type	Z	onal woody o	Zonal herbaceous components		
	BLD	BLE	SCL + LEG	MESO + DRY HERB	
Broad-leaved decidous forests "BLDF"	> 80 %			≤ 30 %	
Ecotone "BLDF" / "MMF"	75-80 %	< 30 %			
Mixed mesophytic forests "MMF"	< 75 %	< 30 70	< 20 %	< 30 %	
Ecotone "MMF" / "BLEF"	< / 5 /0	30-40 %			
Broad-leaved evergreen forests "BLEF"		>40 %	(SCL + LEG) < BLE	< 25 %	
Subhumid sclerophyllous forests "ShSF"			≥ 20 %	< 30 %	
				30–40%; MESO HERB >	
Xeric open woodlands		< 30 %	≥ 20 %	DRY HERB up to 10 %	
				of all zonal herbs	
Xeric grasslands or steppe		< 30 %		\geq 40 %	

Table 2. Adapted scheme of the zonal vegetation types, as defined by percent of zonal woody angiosperms and zonal herbs (modified after Teodoridis et al. 2011).

reflected in fossil assemblages. The analysis does not consider abundances of taxa and abiotic factors are not differentiated beyond the discrimination of zonal versus azonal taxa.

Another common method that can help to interpret the structure of an ancient plant cover is a geoelement analysis. This approach has been methodologically derived from a phytogeographical approach and has been used to evaluate and show the migration and extinction of fossil taxa in the Paleogene and Neogene (e.g., Unger 1847, Heer 1855, 1859; Ettingshausen 1851, 1869, 1885; Mai 1995, Kvaček et al. 2011). This method analyses the habitat ranges of the most similar relatives (MSRs) of fossil taxa and clusters them into several defined groups, i. e. elements and/or subgroups, such as tropical-subtropical elements (A), holarctic elements (B) and others (C) (sensu Mai 1995, p. 239-240). The proportion of the defined geoelements can indicate the general vegetation character of a fossil assemblages based on the representation of the most abundant geoelement. Kvaček et al. (2011) noted an almost identical percentage proportion of the geoelements A and B (36 % vs. 59%) and percentages of the BLE and BLD components (35% vs. 52 %) sensu the IPR-vegetation analysis in the mastixioid flora of Arjuzanx (France). This fact can be simply explained by a similar methodological background of both methods: (1) to some degree corresponding taxonomicphysiognomic definitions of the geoelements A and B and the BLE and BLD components in the IPR-vegetation analysis and (2) the quantitative analysis.

Both the phytosociological approach and the geoelement analysis are weakly empirical methods, whereas the IPRvegetation analysis includes botanical, sociological, and ecological input/information as well as quantitative evaluation.

A relatively new method is the "reconstruction of vegetation transects" developed by Bertini and Martinetto (2008, 2011). It was first applied on selected Messinian to Piacenzian floras from North and Central Italy. This method also evaluates an integrated fossil plant record and distinguishes physiognomic-taxonomic scoring parameters that are similar to the IPR-vegetation analysis such as azonal, zonal, extrazonal habitats, leaf type categories, growth forms. In addition, and differing from the latter analysis, it includes pollination types (Bertini and Martinetto. 2011, tables 2, 3). As opposed to the IPR-vegetation analysis, this new method considers "representative taxa" defined by their appropriately weighted abundance-percentage datasets. Incorporating the abundance factor into reconstructions of the fossil plant cover (which also reflects standard geobotanical methods) can help to more closely and reliably correlate hypothetical fossil azonal and zonal vegetation types to suitable living vegetation units. As mentioned above, the IPR-vegetation analysis excludes taxa abundances because they are usually strongly biased by taphonomic factors that differ usually strongly among the organ assemblages (leaves versus fruits and seeds versus pollen) - Kovar-Eder et al. (2008, p. 109). The application of the IPR-vegetation analysis on empirically (botanically) defined modern vegetation units from SE China and Japan, including the cluster analysis of the results, have proved that no significant differences exist between empirically defined vegetation types that consider abundances and the vegetation types predicted by the IPR-vegetation analysis (Teodoridis et al. 2011).

Martinetto and Vassio (2010) recently developed a special quantitative vegetation reconstruction method called the "Plant Community Scenarios" focusing only on carpodeposits (sensu Gee 2005). This method makes use of the CENOFITA 1.2 database (Martinetto and Vassio 2010). It has been introduced and tested for the flora of Ca' Viettone, Italy. As the "reconstruction of vegetation transects" method, several scoring groups are applied such as different leaf type categories, plant habitus and ecology. Contrary to all the other methods, this one includes tentative corrections for taphonomical biases induced by different size and production rates of plant parts (Martinetto and Vassio 2010, tables 2, 3).

The IPR-vegetation analysis internet platform

The website and database for the IPR-vegetation analysis is freely accessible under www.iprdatabase.eu. The database yields two independently working platforms, i.e., FOSSIL and RECENT, and provides an evaluation template with formulas to calculate relevant component percentages. The FOSSIL platform includes fossil IPR-vegetation analysis datasets that cover the stratigraphical interval from Eocene to Pliocene. The RECENT platform includes modern taxa to assemble comparative IPR-vegetation datasets for living vegetation. So far in the latter, taxa from China and Japan are included (scored for the studies of Teodoridis et al. (2011). Both platforms show the same inner structure and working style to optimise user-friendliness. The databases can be searched in two different ways. The first is a "quick search" displayed on the website top. After entering the first letter, an alphabetical offering list of all taxa and/or sites (in Plants Bookmark or Sites Bookmark) starting with this letter appears for selection. Clicking on the selected name of a taxon will display all the scorings at the different sites (text-fig. 1). Note that the scores may differ between the sites (see above). Clicking on the selected site name will upload the complete IPR-vegetation analysis result (textfig. 2). The second way to search within the database is to use the switch "list of plants/list of sites" located on the right side of the "quick search" box. Clicking on this switch, a list of taxa/sites already included in the database will appear in alphabetical or geographical (by country) order. Similar to the quick search, after the selection of a taxon and/or site, additional relevant datasets will be shown. The button "Clear all" clears the "quick search" box for the next attempt. Additional information containing detailed taxonomical and physiognomical description and autecology of taxa derived from free websites is linked to relevant living taxa and is available within the RECENT platform.

Other practical features of the internet platform are its immediate ability to change classification parameters or to directly edit synonyms, typographical errors and taxa scoring within uploaded IPR-vegetation analysis datasets. To keep the database operational, the mentioned inputs are possible only under an authorised database access.

Technical background

Raw datasets (taxa scorings) are inputted by the user into a locked "score list template" and saved as a MS Excel sheet. Mandatory fields (marked by *) include taxa scores,

Stes	~	Plants		FUSA	L & RECE	ENT plan	um	quick	search b	bax	L L	List of sites / plants		
Site	es & Plan	its tabs			Clear	al Acert	ricașiidan					Search List	t of plants	
cer t		pidatu	m											
COND	BLD	DLE	SCL.	ws	Zonal arboreal PALM	Zonal arboreal ferms	D-HERB	M-HERB	AZONAL WOODY	Azonal non- woody elements	AQUATEC	problematic taxa		
0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00		
COND	BLD	84.E	SCL.	LEG	Zonal arboreal PALM	Zonal arboreal feras		N-HERB	AZONAL WOODY	Azonal non- woody	AQUATEC	problematic		
						and the second			-					
0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00				mences o		I uploaded fossil/rece	
	0.25 Gravel and		0.00	0.00	1.		0.00		-	ist of occu		f a taxon in a	Il uploaded fossil/rece , which may vary!!!	
			0.00 SCL	0.00	1.			M-HERB	AZONDE	ist of occu		f a taxon in a ng its scoring		
0.00	Scavel and	Sand	2200	3306	0.00 Zonal arboreal	0.00 Zonal arboreal		M-HERB 0.00	AZONDE	ist of occu localiti woody	ies includi	f a taxon in a ng its scoring		
CONDE	BLD	Sand DLE	sci.	LEG 0.00	20.02 Zonal arboreal PALM	2.00 Zonal arboreal ferns	D-HERB	0.00	AZONNE	ist of occu localiti woody elements	AQUATIC	f a taxon in a ng its scoring proveman: taxa		
CONST 0.00 olecter CONST 0.00	840 840 0.25 840 0.25	BLE 0.00 BLE 0.00	sci. 0.00 sci. 0.00	1.85 0.00	0.02 Zonal orboreal PALH 0.02 Zonal orboreal	0.00 Zonal arbored feras 0.00 Zonal arbored	D-HERB 0.00	0.00	AZONDE WOODY 0.75	ist of occu localiti woody elements 0.00 Azonal woody	es includi AQUATEC 0.00	f a taxon in a ng its scoring programsor 0.00 problematic		
CONST 0.00 olecter CONST 0.00	BLD BLD 0.25 BLD	BLE 0.00 BLE 0.00	sci. 0.00 sci. 0.00	LEG 0.00	0.02 Zonal erboreal PALM 0.03 Zonal erboreal PALM	0.00 Zonal arboreal feras 0.00 Zonal arboreal feras	D-14ERB 0.00 D-14ERB	0.00	AZONNE WOODY 0.75 AZONAL WOODY	ist of occu localiti woody elements 0.02 Azonal woody elements 0.02	es includi AQUATEC 0.00 AQUATEC	f a taxon in a ng its scoring processary 0.00 problematic taxa		
CONST 0.00 olecter CONST 0.00	840 840 0.25 840 0.25	BLE 0.00 BLE 0.00	sci. 0.00 sci. 0.00	LEG 0.00	0.02 Zonal erboreal PALM 0.03 Zonal erboreal PALM	0.00 Zonal arboreal feras 0.00 Zonal arboreal feras	D-14ERB 0.00 D-14ERB	0.00	AZONNE WOODY 0.75 AZONAL WOODY	ist of occu locality elements 0.02 Azenal mon- woody elements	es includi AQUATEC 0.00 AQUATEC	f a taxon in a ng its scoring processary 0.00 problematic taxa		
CONST 0.00 olected CONST 0.00 ormil Libri CONST 0.00	Prevent and BLD 0.25 BLD 0.25 hore and P BLD 0.25	Sand BLE 0.00 BLE 0.00 Cardiandid I BLE 0.00	SCL 0.00 SCL 0.00 (0.00)	LES 0.00 LES 0.00	0.02 Zonal erboreal PALM 0.02 Zonal erboreal PALM 0.02	0.00 Zonal arboreal feras 0.00 Zonal arboreal feras 0.00 Zonal arboreal	D-HERB 0.00 D-HERB 0.00	0.00 M-HERB 0.00	AZONAL WDODY 0.75 AZONAL 0.75 AZONAL	ist of occa localiti woody elements 0.02 Azonal mon- woody elements 0.02 Azonal mon- woody	AQUATEC 0.00 AQUATEC 0.00	f a taxon in a ng its scoring provenace taxa 0.00 problematic taxa 0.00 problematic		
CONST 0.00 olected CONST 0.00 ormil Libri CONST 0.00	Crevel and BLD 0.25 BLD 0.25 hore and P BLD	Sand BLE 0.00 BLE 0.00 Cardiandid I BLE 0.00	sci. b.00 sci. b.00 adDor sci.	LEG 0.00 LEG 0.00	0.00 Zonal arboreal PALM 0.00 Zonal arboreal PALM 0.00 Zonal arboreal PALM	2.00 Zonal erboreal feras 0.00 Zonal erboreal feras 2.00 Zonal erboreal feras	D-HERB 0.00 D-HERB 0.00 D-HERB	0.00 M-HERB 0.00 M-HERB	AZONAT WOODY 0.75 AZONAL WOODY	ist of occa localiti woody elements 0.02 Azonal woody elements 0.02 Azonal woody elements 0.02	AQUATIC 0.00 AQUATIC 0.00 AQUATIC AQUATIC	f a taxon in a ng its scoring produceratic taxa 0.00 problematic taxa 0.00 problematic taxa		

Text-fig. 1. "Plant screen" scheme of complete results of the IPR-vegetation analysis derived from the database.

Stes Plants	88	ASSIC 8	NEGEN	[platform		quick sea	rch bax		List	of sites /	plants	1.5	
Sites & Plants tabs	Clear a	Holedei	12		-			Search	lat of ste	8			
Holedeč									G	eneral in	formation	of the se	lected site
rovince: Nost Basin ige: Early Mocene - upper part leferences: imbenet, B. 1904. O novim m ecdoride, V. 2002. Tertary M lationalis Pragae, Series B. Hel ismarks:	alexists tretah	arnich ros tation of t	tin ve spo he Hisvači	sdnim palar ov gravel a	and sand							ubikć), - Act	a Musei
	CONIFER	BLD	81.0	SCI.	ULC.	ZONPALM	ARBEERN	0-11E88		AZONAL WOODY	AZONAL NON- WOODY	AQUATIC	PROBLEMAT
sum of taxa	ė.	15.65	1.75	0.9		D		0		9.7	wooor	2	
wroentage of zonal taka		72.47	8.22	4.23	14.00	D		0					· ·
ercentage of zonal woody regesperme		73.47	8.22	4.23	14.08	D							
		Value											
ium of all taxa		34											
ium of zonal tana		21.3											
		21.3											
sum of zonal woody angiosperm		20.00											
sum of zonal woody angiosperm Sum of % SCL + LEG		18.31											
sum of zonal woody angiosperm Sum of % SCL + LEG Sum of % D-HERB + M-HERB (20													
Sun of zonal woody angiosperm Sun of % SCL + LEG Sun of % D-HERB + M-HERB (ZC Regetation formation:	WAL HERE)					ion analysi		2					
Sun of zonal woody angiosperm Sun of % SCL + LEG Sun of % D-HERB + M-HERB (ZC Regetation formation:	WAL HERE)					ion analysi component		2					
sun of zonal woody angiosperm sun of % SCL + LGG sun of % D-HERB + M-HERB (25 egetation formation: INF (Placed Nesophytic Forest; sonal worm-temperate to subt)		S	pecificatio	on of its i	component	s.		ed as BLD	< 80%, I	JLE < 309	k, 90, + U	G < 20% an
sen of zonal woody angiosperm kan of % SCL + LGG lan of % D-HERB + M-HERB (ZC egetation formation: NF (Placed Hesophytic Forest onel worm-temperate to subt)		S	pecificatio	on of its i	component dic Forest *	s.	haracteriz		< 80%, 1	AZONAL NOR- WDODY	aquatic	G < 20% an PROHILEMAT TAXA
on of zonal woody angiosperm on of % SCL + LEG one of % D-HERB + M-HERB (ZC egetation formation: NF (Hood Resuphytic Forest onal worm-temperate to subt 2MAL HERB < 30%; Taxoe	ow, HEND)) ropical mixed	Resolution	S) tic forest	sci.	an af its i Mesophy LEG	component dic Forest * 208PALM	S. MMI") is c ARDITERN	baracteria D-HERB	м-неяв	AZONAL	AZONAL NON-		PROBLEMAT
um of zonal woody angiosperm um of % SCL + LGG um of % D-HERB + M-HERB (ZC egetation formation: NF (Placed Hesophytic Forest anal warm-temperate to subt 20AL HERB < 30%; Taxoe Agbone" acuminata	CONDER	R R R R R R R R R R R R R R R R R R R	S) tic forest BLE	sca.	un of its i Mrsophy LEG	component dic Forest * zowpace	ARDITERN	D-MEMM	H HEAD	AZONAL	AZONAL NON- WOODY	AQUATIC	PROBLEMAT
on of zonal woody angiosperm um of % SCL + LGG on of % SCH + LGG egetation formation: NF (Mood Nesophytic Forest onal worm-temperate to subtr 2004, HERB < 30%; Taxone legtors' acumunata cer anguatiotum	OWAL HERE)	BLD 0.50	S) tic forest BLE	sca.	LEG List of em acted loc	component dic Forest * compace sployed tax ality. After o	ARDFERN a includin dick on ea	D-HERR g their so	e ercen	AZOMAL the ng and	AZONAL NON- WOODY 0.03	AQUATEC	PROBLEMA TAXA
um of zonal woody angiosperm um of % SCL + LEG um of % D-HERB + M-HERB (ZC egetation formation: NF (Hood Resuphytic Forest anal warm-temperate to subt 20AL HERB < 30%; Taxon hughme ⁺ acuminata car anguatiobum car integrimme	CONDITA 0.00 0.00	BLD 1.50	S) tic forest BLE 0.00	sca.	LEG List of em acted loc	component dic Forest * zowpace	ARDFERN a includin dick on ea	D-HERR g their so	e ercen	AZOMAL the ng and	A20NAL NON- W000Y 0.03 0.09	AQUATIC 0.00 0.00	PROBLEMA TAXA 0.00 0.00
ion of roxal woody angiosperm ion of % SCL + LBG ion of % SCL + LBG egetation formation: INF (Hood Hesophytic Forest onal worm-temperate to subt DRAL HERES < 30%; Taxon Agone" acurenata icer enguatidoum icer regaritation icer regaritation	CONDICAL INCIDENT	BLD 0.50 1.00 1.00	5 tic forest 84.8 0.00	sca.	LEG List of em acted loc	component dic Forest * compace sployed tax ality. After o	ARDFERN a includin dick on ea	D-HERR g their so	e ercen	AZOMAL the ng and	A20NAL NON- W0009 0.03 0.03	AQUATEC 0.00 0.00 0.00	PROBLEMA TAXA 0.00 0.00 0.00
Sum of zonal woody angiosperm Sum of % SCL + LDG Sum of % SCL + LDG Sum of % D-HERB + M-HERB (ZO Aregetation formation: INF (Hood Nesophytic Forest Conal warm-temperate to subt SONAL HERB < 30%; Taxon Taxon "Augions" scuminata Acer anguatiobum Acer providementogenesidanum Acer providementogenesidanum Acer providementogenesidanum	CONDICAL (1010)	BLD 1.50 1.50	5 52 forest 84.8 0.00 0.00	sca.	LEG List of em acted loc	component dic Forest * compace sployed tax ality. After o	ARDFERN a includin dick on ea	D-HERR g their so	e ercen	AZOMAL the ng and	AZONAL MON- WOODY 0.03 0.03 0.03	AQUATEC 0.00 0.00 0.00 0.00	PROHLEMAT TAXA 0.00 0.00 0.00 0.00
Sun of zonal woody angiosperm Sum of % SCL + LDG Sun of % D-HERB + M-HERB (ZC Aregetation formation: INF (Hand Nesophytic Forest Ional worm-temperate to subt DNAL HERB < 30%; Taxon Acer ingustriana Acer ingustriana	CONDITION CONDITION 0.03 0.03 0.03 0.03	Resolution 100 - 1	5 5 84.8 0.00 0.00 0.00 0.00	sca sca sca sca o sele o o	LEG LIST of en acted loc courrence	zomponent dic Forest * zompaum nployed tax ality. After es will app	ARDITERN ARDITERN a Includin dick on ea sar on the	baracteria D-HEBB g their so ich taxon next site	w ercen coring for its scori - see Fi	the ng and ig. 1.	AZONAL NOR- WOODY 0.00 0.00 0.00 0.00 0.00	AQUATEC 0.00 0.00 0.00 0.00 0.00	PROBLEMAT TAXA 0.00 0.00 0.00 0.00 0.00
Sum of zonal weekly angiosperm Sum of % SCL + LEG Sum of % D-HERB + M-HERB (20 Aggetation formation: INF (Haxed Hesphytic Forest; Conal warm-temperate to subtr CONAL HERB < 30%;	CONTERN CONTERN 0.00 0.00 0.00 0.00 0.00 0.00	RLD 8LD 1.50 1.50 0.55 0.25 1.00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	sca sca u u u u u u u u u u u u u	LEG LEG LIST OF EM acted loc Courrence 9.00	component tic Forest * ployed tax aity. After es will app 0.00	ARDITERN ARDITERN a Includin dick on the 0.00	D-HERR D-HERR g Their so ich taxon next site 5.00	oring for its scori - see Fi	the ng and ig. 1.	AZONAL NOH- WOODY 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	PROBLEMAT TAXA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Text-fig. 2. "Site screen" scheme of complete results of the IPR-vegetation analysis derived from the database.

geographical information (country, locality/site), stratigraphy and references quoted, e.g., original floristic studies, etc. The mandatory items are important for further "internal" database processes (there are criteria for "internal" classification of the studied objects). A completed score list template is handled by a Visual Basic macro, which saves the file as a CSV file (a common database-friendly format). The macro handler also adjusts the input datasets into a proper format, removing invalid and obvious typological symbols). Afterwards, the CSV file is handled by a PHP import script, which imports it into the final MySQL database. The database application is powered by a combination of PHP (scripting language) and MySQL (relational database management system). It also uses the jQuery technology (a Java Script library), as well as styling by CSS (Cascading Style Sheets) and processing queries by AJAX (Asynchronous JavaScript and XML). Thanks to those technologies, the "online database" page does not need to be reloaded every time a query is processed.

IPR-vegetation analysis datasets input

The process of data input is explained here in several steps: (1) Download the scorelist template (Appendix). (2) Fill all mandatory items in the heading of the score list (marked by *). Additional information, such as province/ state and remarks quoted, are warmly welcome. Note that suffixes behind the locality names, i.e. "-P", "-L", "-F", "-X" represent pollen, leaf, and carpological or xylotomic datasets, respectively. A locality name without a suffix denotes a fossil record of leaves, seeds and fruits, and pollen. (3) Add the taxa and respective scorings into the template and save the data in the standard MS Excel format (*.xls,*. xlsx). (4) Send the file/files to the administrator of the website (i.e. the first author) and your datasets will appear within the IPR-vegetation analysis internet platform in a timely manner.

Perspectives of the IPR-vegetation analysis internet platform

The open access internet platform presented here is a useful tool to effectively perform the IPR-vegetation analysis. The authors of the database intend to put the most relevant fossil and modern IPR-vegetation results into the database in the very near future. Moreover, datasets from new IPR-vegetation analysis studies, whether fossil or modern, are welcome. With an increasing number of data sets, the database will develop and achieve its full-working state, improving the IPR-vegetation analysis to reconstruct Cenozoic zonal vegetation.

Acknowledgements

We would like to thank to Angela A. Bruch and an anonymous reviewer for the thorough and constructive review of the early version of the manuscript. The study, building of the IPR-vegetation analysis website and database, was supported by the grant projects GA ČR (Grant Agency of the Czech Republic) No P210/10/0124 and KONTAKT (Ministry of Education of the Czech Republic) No. ME 09115.

References

- Bertini, A., Martinetto, E. (2008):. Messinian to Zanclean vegetation and climate of Northern and Central Italy.
 Bollettino della Società Paleontologica Italiana, 47(2): 105–121.
- Bertini, A. , Martinetto, E. (2011): Reconstruction of vegetation transects for the Messinian–Piacenzian of Italy by means of comparative analysis of pollen, leaf and carpological records. – Palaeogeog., Palaeoclimat., Palaeoecol., 304: 230–246.
- Denk, T., Grimm, G.W. (2005): Phylogeny and biogeography of *Zelkova* (Ulmaceae *sensu stricto*) as inferred from leaf morphology, ITS sequence data and the fossil record. – Bot. J. Linn. Soc., 145: 129–157.
- Ettingshausen, C. (1851): Die tertiäre Flora der Umgebung von Wien. – Abh. K. .-K. Geol. Reichsanst. Wien, 1: 1–36.
- Ettingshausen, C. (1869): Die fossile Flora des Tertiärbeckens von Bilin III. – Denkschr. K. Akad. Wiss. math.naturwiss. Kl., 29: 1–110.
- Ettingshausen, C. (1885). Die fossile Flora von Sagor in Krain III. – Denkschr. K. Akad. Wiss. math.-naturwiss. Kl., 50: 1–56.
- Gee, C. T. (2005): The Genesis of Mass Carpological Deposits (Bedload Carpodeposits) in the Tertiary of the Lower Rhine Basin, Germany. – PALAIOS, 20: 463–478.
- Heer, O. (1855): Flora Tertiaria Helvetiae I. J. Wurster et comp., Winterthur, 116 pp.
- Heer, O. (1859): Flora Tertiaria Helvetiae III. J. Wurster et Comp., Winterthur, 377 pp.
- Jacques, F.M.B., Shi, G. Wang, W. (2011): Reconstruction of Neogene zonal vegetation in South China using the Integrated Plant Record (IPR) analysis. – Palaeogeog., Palaeoclimat., Palaeoecol., 307: 272–284.
- Jechorek, H., Kovar-Eder, J. (2004): Vegetational characteristics in Europe around the late early to early middle Miocene based on the plant macro record. – Cour. Forschungsinst. Senckenb., 249: 53–62.
- Kirchheimer, F. (1957): Die Laubgewächse der Braunkohlenzeit. – VEB Wilhelm Knapp Verlag, Halle (Saale), 783 pp.
- Kovar-Eder, J., Kvaček, Z. (2003): Towards vegetation mapping based on the fossil plant record. – Acta Univ. Carol., Geol., 46 (4): 7–13.
- Kovar-Eder, J., Kvaček, Z. (2007): The integrated plant record (IPR) to reconstruct Neogene vegetation: the IPR--vegetation analysis. – Acta Palaeobot., 47 (2): 391–418.
- Kovar-Eder, J., Jechorek, H., Kvaček, Z., Parashiv, V. (2008): The Integrated Plant Record: an essential tool for reconstructing Neogene zonal vegetation in Europe. – PALA-IOS, 23: 97–111.
- Kovar-Eder, J., Meller, B., Zetter, R. (1998): *Cercidiphyllum crenatum* (Unger) R.W. Brown in der kohleführenden Abfolge von Oberdorf N Voitsberg, Steiermark. Mitt. Ref. Geol. Paläont., Landesmuseum Joanneum Sonderheft, Sh., 2: 239–264.
- Kovar-Eder, J., Kvaček, Z., Ströbitzer-Hermann, M. (2004): The Flora of Parschlug (Styria, Austria) – Revision and Synthesis. Ann. Naturhist. Mus. Wien, 105 A,105A: 45–157.

- Kovar-Eder, J., Kvaček, Z., Martinetto, E., Roiron, P. (2006): Vegetation of southern Europe around the Miocene / Pliocene boundary (7-4 MA the High Resolution Interval I) as reflected in the macrofossil record. Palaeogeogr., Palaeoclimat., Palaeoecol., 238: 321–339.
- Kvaček, Z. (2007): Do extant nearest relatives of thermophile European Tertiary elements reliably reflect climatic signal? Palaeogeog., Palaeoclimat., Palaeoecol., 253: 32–40.
- Kvaček, Z., Teodoridis, V., Roiron, P. (2011): A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). – Palaeontographica, B., 285: 1–109.
- Mai, D. H. (1995): Tertiäre Vegetationsgeschichte Europas. – Gustav Fischer Verlag, Jena, 691 pp.
- Martinetto, E., Vassio, E. (2010): Reconstructing "Plant Community Scenarios" by means of palaeocarpological data from the CENOFITA database, with an example from the Ca'Viettone site (Pliocene, Northern Italy). – Quaternary International, 225: 25–36.
- Royer, D.L., Kooyman, R.M., Little, S.A., Wilf, P. (2009): Ecology of leaf teeth: A multi-site analysis from an Australian subtropical rainforest. – Am. J. Bot., 96: 738–750.

- Saporta, G., Marion, A.F. (1878): Révision de la flore Heersiennes de Gelinden. – Mém. Cour. et Mém. de Sav. Étrang., 41: 1–112.
- Saporta, G. (1881): Die Pflanzenwelt vor dem Erscheinen des Menschen. – Verlag Vieweg und Sohn, Braunschweig, 378 pp.
- Teodoridis, V. (2010): The Integrated Plant Record vegetation analysis from the Most Basin (Czech Republic). – N. Jahrb. Geol. Paläont., Abh., 256(3): 303–316.
- Teodoridis, V., Kovar-Eder, J., Mazouch, P. (2011): The IPR-vegetation analysis applied to modern vegetation in SE China and Japan. – PALAIOS, 26(10): 623–638.
- Teodoridis, V., Kvaček, Z., Uhl, D. (2009): Late Neogene palaeoenvironment and correlation of the Sessenheim-Auenheim floral complex. Palaeodiversity, 2: 1–17.
- Unger, F. (1847): Chloris protogaea. Beiträge zur Flora der Vorwelt. 8-10. – W. Engelmann, Leipzig, 93– –149 pp.
- Webb, D. A. (1959): A physiognomic classification of Australian rain forest. Jour. Ecology, 47: 551–570.

Appendix. Score list template for the IPR-vegetation analysis database.

* Country: Province / State:														
Province / State:	-													
* Locality / Site: * Age / Stratigraphy: * References:														
* Age / Stratigraphy:														
* References:														
Remarks:	1													
* mandatory items														
				Sector M	0.0111100		000.0411.11			540164C				
	T			TAXONO	MIC-PH	SIGGN	OMIC CI	OMPONE	NTS / GR	ROUPS				
	TAXONOMIC-PHYSIOGNOMIC COMPONENTS / GROUP ZONAL								T	AZONAL	_	9		
	-				Other	_	_			-	_	_	15	
Taxon	COMPER		E			11140102	AUSTEN			ADDRIAL	3.5	브	PROBLEMATIC TAXA	
	1	12	2	g	8	10	2	3-4685	MHER	88	AZOHIAL MIRCAN	AQUATIC		
	8	-		<u>ع</u>	-	8	3	- A	3	2.8	Q=3	2	1 ž	
				_	-	14	-	-	-		-	-	-	0.0
<u>11.</u>	-		-			COLOR ST	-	-	-	-				0,0
	-				-			-	-	-				
	-		-	-	-	-	-	-	-	-	-	-		0,0
	-	-	-		-	-	-	-	-	-	-			
	-				_			-		-				
	-	-	-		-				-	-		-		0,0
<u></u>	-			-	-	-	-	-	-	-		-		0.00
	-		-		-	-		-	_	-		-		0.0
20	-		-			_	-	-	-	-		1.1		0,0
					-	_		-	-	-	-			0.0
2	-				-	1	11	_	-	-				0.0
<u> </u>	-		-			1.000	_			-		1.1		0,0
	-		1 11			1.000	1.0		-			II		0.0
														0,0
57	-		-		_	1.1	12		-					0,0
	-				-									0,0
						1.1	1.1		_			1.0		0,0
	-		· · · · ·	-		C.L.	a	_	·	0				0,0
					_		1.0			1				0,0
	1.1		1.1			1111111	1				C	2		0,0
2						10000101	1000							0.0
20			1		1.1	1								0,0
			3 - B			12	10.00		1					0,0
			1			12-00	10-00			2		11		0.0
	1													0,0
5	1.1		1 S			1	-					1.5		0,0
			1			P.4				1		-		0.0
S	1					1								0.0
S		-	· · · · · · · · · · · · · · · · · · ·				-		· · · · · · · · · · · · · · · · · · ·		·	-		0,0
						A.L.	1.00							0.0
66 C			-				-			1		-		0.0
						1.0000	1					-		0.0
Q				-	1	1.000						1000		0.0
						and some state				1		100		0.0
			1			1	-							0.0
			1			and the second distance						-		0.0
0	-		1 1				-							0.0
		-	3			The Party of the P	1.1					1000		0.0
			-											0.0
	-		-		-	The second second		-	-	-	-	-		0.0
	-		-		-	-	-		-					0.0
	-				_	-				-				68
	-	-	-		-	-	-			-		-		0.0
	-			-	-	-	-		-	-	-			0.0
	1		-		-		and the second	_	-					0,0